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Adsorption of a Flexible Self-Avoiding Polymer Chain: 
Exact Results on Fractal Lattices 
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The large-scale behavior of surface-interacting self-avoiding polymer chains 
placed on finitely ramified fractal lattices is studied using exact recursion 
relations. It is shown how to obtain surface susceptibility critical indices and 
how to modify a scaling relation for these indices in the case of fractal lattices. 
We present the exact results for critical exponents at the point of adsorption 
transition for polymer chains situated on a class of Sierpinski gasket-type 
fractals. We provide numerical evidence for a critical behavior of the type 
found recently in the case of bulk self-avoiding random walks at the fractal to 
Euclidean crossover. 
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1. I N T R O D U C T I O N  

Configurational properties of polymer chains in the vicinity of an interface 
can be strongly modified relative to their bulk characteristics. A subtle 
competion between the gain of internal energy and a corresponding loss of 
configurational entropy when a portion of the chain is brought from the 
bulk to the attractive wall governs the large-scale behavior of the surface- 
interacting polymers. The subject has been in the focus of both experimen- 
tal and theoretical activity. (1-3) This interest has been further enhanced by 
the possible application of polymer adsorption phenomena in numerous 
practical and technological problems. (4) The general picture that emerges 
from these studies reveals that, under certain conditions, polymer chains 
can form a self-similar adsorbed layer near the wall with a decreasing 
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density profile. Then the structure of the polymer chain can be sketched in 
a pictorial way as a collection of loops extending into solution and "trains" 
running along the wall (flat regions of the structure). 

Most theoretical studies have focused on the case of surface-interacting 
polymers in dilute solutions, which corresponds to the single-chain models 
(see, however, refs. 1-3 for a review of the case of many-chain systems). 
The basic physics of a polymer chain in the vicinity of an attractive 
impenetrable surface can be captured by the self-avoiding random walk 
(SAW) model on a semi-infinite lattice with an energy contribution e 
(e = -]e[) for each step along the lattice boundary. Thus, one assigns the 
energy E = eM < 0 to each chain having M steps ("monomers") along the 
lattice boundary (attractive wall). This leads to an increased probability w 
of making a step along the wall, characterized by the Boltzmann factor 

w = exp( - elk B T) > 1 (1) 

At high temperatures (T-~ oe) all chain configurations have the same 
weight and the polymer resides in the desorbed state. However, when the 
temperature is sufficiently lowered, the attractive interactions between the 
wall and the segments of the chain become important and the polymer 
prefers the adsorbed state. The polymer system undergoes a transition at a 
critical adsorption temperature Ta below which a finite fraction M / N  of the 
monomers lie on the surface. Using the analogy between an adsorbed 
polymer chain and the magnetic n ~ 0 vector model with a free surface, it 
has been shown that this point corresponds to a tricritical point (5) and in 
its proximity a crossover regime is observed. In particular, the mean 
number of monomers at the surface M is controlled by this point, 

fN(T~ - T) 1/~ 1, T <  Ta 

M ~ J N ~, T =  Ta 

( ( T - -  T~) -~, T >  T~ 

(2) 

where ~b is the crossover exponent. 
We recall the definitions of principal surface exponents. It is generally 

believed that the asymptotic behavior of the number of N-step SAWs in the 
bulk C(N, T) and the number of N-step walks with one (both) end(s) 
attached to the surface CI(N, T) [Cll(N, T)] is described by 

C(N, T) ~ k t U N  ~'- 1 

CI(N , T) ~ 12NN 1''- 1 

CI,(N, T) ~ #NNYll- I 

(3) 

(4) 

(5) 
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where i = if(T) is the temperature-dependent connectivity constant and 7, 
71, and 712 are the associated critical exponents. It turns out that these 
exponents assume distinct values in different temperature regions: in the 
absorbed region (T< Ta) the chain is basically localized at the wall and 
one has ~1=711=7(d-1)  [-where 7 ( d - l )  is the bulk value of the 
exponent in the space of dimension d - 1  ], while right at the adsorption 
transition (T= Ta), as well as in the high-temperature region (T> Ta), the 
exponents 71 and 712 take new values. It is useful to introduce the 
convenient generating functions for the above-defined numbers 

C(x,~r)= x N y~ C ( N , M ) w  M 
N = I  M = I  

= ~ C(N, T)xN,'-'(] - -Xi )  -~' (6) 
N = I  

cl(X,  r)= x ~ ~ C~(N, M ) w  ~ 
N=I M=I 

= ~ C~(N, T)xN~(1--x#) ~'' (7) 
N = I  

CH(x, T)= x u ~ CH(N, M)w ~ 
N ~ I  M = I  

= ~ Cl l (N  , T )x  N,'.' ( l  - - X # )  - e ' l  ( 8 )  

N = I  

where x is the fugacity per step of the walk. Here C(N, M) is the number 
of N-step SAWs with M steps on the surface, while CI(N, M) [C11(N, M)] 
represents the number of N-step SAWs with M steps on the surface 
provided one (both(and(s) of the walk is (are) attached to the wall. The 
leading singular behavior of corresponding generating functions that 
appears when x approaches xc = 1/#(T) from below is given on the right- 
hand sides of the above relations. Similarly, one can consider the number 
of N-step SAWs given that both endpoints of the walk lie in the bulk, 
Cs(N, T)~ i N N  'ys 1. The generating function for these numbers is 

Cs(x, T)= y, Cs(N, T ) x N ~ ( 1 - - x i )  -~s 
N = I  

(9) 

It is useful to note that, using the above-mentioned analogy between the 
polymer and magnetic systems, these generating functions can be related to 



4 Bubanja et  al. 

corresponding surface susceptibilities. Then a simple scaling argument leads 
to the scaling relations (6) 

7s=271-711=7 +v (10) 

where v is the gyration radius (R) critical exponent. In the high-temperature 
region (T ~> Ta) one expects that both the parallel (R i i) and the perpendicular 
(R• to the surface components of the gyration radius (R 2= R~I q-R 2) are 
governed by the same (bulk) exponent v 

(R~j)~N 2~ and ( R 2 ) ~ N  2v (11) 

However, in the low-temperature region T< Ta, due to the adsorption, one 
expects a different asymptotic behavior: (R~I) ~ N 2~1, with vii = v(d- 1) 
Iv(d- 1) denotes the bulk gyration radius critical exponent in the space of 
dimension ( d - 1 ) ] ,  while ( R ~ )  becomes a constant independent of N 
(implying v• = 0). (3t 

The critical behavior of surface-interacting polymers has been studied 
in various ways, including computer simulations, (5'7'8) exact enumerations 
on lattices, (9'1~ transfer-matrix methods, (11'1') renormalization group 
(RG) approaches, (13'14) and conformal-invariance techniques in two dimen- 
sions. (15'16) For a long time the exactly solvable models of the adsorption 
transition were limited to Gaussian random walks. (17) Recently, however, 
exact solutions have been found for a directed SAW model on regular 
lattices, (18) and for the case of a SAW on some fractal lattices. (19) 

Interest in finitely ramified fractal lattices arises mainly from a belief 
that they may serve as crude models for real amorphous materials. On the 
other hand, many nontrivial physical models can be treated exactly on 
these lattices. Aside from being interesting in their own right, these results 
are often in qualitative (and sometimes even quantitative) agreement with 
their counterparts for standard Euclidean lattices. (2~ One expects, there- 
fore, that a study of fractal models may also yield some insight into the 
behavior of conventional homogeneous systems. The examples of surface- 
interacting SAWs (SISAWs) on finitely ramified deterministic fractals 
support this expectation. For this case Bouchaud and Vannimenus have 
developed a simple RG approach to study the two-point correlation func- 
tions. (ag) These authors have presented a detailed study of the critical 
behavior for the case of 2D and 3D Sierpinski gaskets. In particular, they 
found the exact values of crossover and correlation length (i.e., gyration 
radius) critical exponents. In this paper we extend their approach to the 
case of open SISAWs. We show how to obtain the surface susceptibility 
critical exponents defined in (3)-(5) and how to modify the scaling relation 
(10) to the case of fractal lattices. Then, motivated by recent curious 
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findings for the bulk critical behavior of SAWs on a family of Sierpinski- 
type fractals, ~2~ 23) we study the problem of SISAWs on the same class 
of lattices. The members of this family can be labeled by an integer b, 
2~<b< 0% and for large values of b the underlying lattice structure 
becomes more and more similar to a triangular wedge, while its fractal and 
spectral dimension tend to their Euclidean value 2. Using the scaling 
method, Dhar argued that v(b) should approach, for large b, its two- 
dimensional value (va= 2 = 3/4~24~) from below, whereas 7(b) should tend to 
a non-Euclidean value 133/32122) (we recall 7a=2=43/32). We provide 
numerical evidence that a similar puzzle can take place in the case of 
SISAWs as well. More specifically, we find that the value of the crossover 
exponent ~b monotonically decreases when the lattice parameter b increases, 
2~<b~<9. It turns out that the value of ~b crosses its two-dimensional 
Euclidean value (~bd=2 = 1/2(16~), while the specific heat critical exponent c~ 
becomes negative at b ~ 6. This means that ~b and c~ (as well as v) should 
become nonmonotonic functions of b, providing these exponents approach 
their Euclidean values in the limit b ~ 0o. 

In Section 2 we present the exact recursion relation for the corre- 
sponding set of restricted partition functions needed to obtain surface 
scaling exponents for a representative finitely ramified fractal, a 3-simplex 
lattice. Then we find corresponding expressions for the generating functions 
(7)-(9) which allow us to find the exact values of the critical exponents 71, 
7H, and 7s. This approach can be easily generalized to the case of other 
finitely ramified fractal lattices. We provide also scaling arguments for the 
scaling relation between susceptibility critical exponents on fractal lattices. 
In Section 3 we describe the critical behavior of two-point correlation func- 
tions of the surface-interacting SAWs for the Sierpinski gasked family of 
fractals. Finally, in Section 4 we present an overall discussion of the results. 

2. T H E  T R U N C A T E D  3 - S I M P L E X  LATTICE 

Our model is very close to the one studied by Bouchaud and 
VannimenusJ ~9) We assume that the surface-interacting polymer chain is 
situated on the truncated 3-simplex lattice, one boundary of which 
represents an attractive surface. This is a fractal lattice ~25) with the fractal 
dimension d ! =  log 3/log 2, while the fractal dimension of its "surface" in 
d~. = 1 (see Fig. 1 ). To each N-step walk having M steps along the wall and 
with P steps lying in the surface layer adjacent to the wall we associate the 
weight xNwMtP, where w is given by (1). Here the Boltzmann factor 
t=exp(-~,/k~T) is introduced to take into account the interaction 
between the surface and the polymer chain segments lying in the first 
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Fig. 1. Schematic sketch of a SISAW (thick line) on the truncated 3-simplex lattice at the 
third stage of iterative construction of the lattice. We assign the Boltzmann factor w(t) to each 
vertex lying at the attractive wall (in the layer adjacent to the wall) through which the walk 
passes. 

neighborhood of the wall (we attribute the energy et for each such segment 
of the chain). It turns out that for an attractive surface an unbinding 
transition at a finite temperature exists only if t < 1 (i.e., for a repulsive 
interaction potential e t>0) .  (19) As pointed out by Bouchaud and 
Vannimenus, the presence of such a repulsive part in the interaction poten- 
tial, for a chain situated on the Sierpinski gasket, allows an entropic effect 
which causes the chain to prefer the desorbed state (for t > 1 the chain is 
always adsorbed). 

We would like to determine the critical behavior of surface-interacting 
SAWs on the 3-simplex lattice. To achieve this, we extend the original 
approach of Dhar, who analyzed the bulk critical behavior of SAWs on 
finitely ramified fractals. (26) He showed that the relevant generating func- 
tions for SAWs can be expressed in terms of a finite number of restricted 
partition functions. These partition functions can be defined recursively as 
weighted sums over all internal configurations of SAWs for a given stage 
of iterative construction of the fractal lattice. To describe the bulk proper- 
ties of SAWs on the 3-simplex lattice one needs only four variables in the 
recursion relations. In order to study the surface critical behavior of 
two-point correlation functions, Bouchaud and Vannimenus defined three 
restricted partition functions. However, the recursion relations required to 
obtain the generating function (7)-(9) involve, a priori ,  20 restricted parti- 
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Fig. 2. Diagrams representing the 20 restricted generating functions for SISAWs on the 
truncated 3-simplex lattice. In order to describe open walks, one has to make a distinction 
between the walks ending at the attractive wall (black circles) and the walks that terminate 
somewhere in the bulk of the rth-order lattice (open circles). The endpoints of the bulk open 
walks lie, of course, in the bulk. In the case of the Sierpinski gasket family of fraetals one has 
also to distinguish between the walks visiting only two vertices and those walks that pass 
through all three corner vertices. 

t ion functions.  Thei r  schemat ic  represen ta t ion  is depic ted  in Fig. 2. Here  
the defini t ions of pa r t i t i on  funct ions A, B, C, and  D coincide with those of 
ref. 26, while for B1 and  B 2 we follow the co r re spond ing  definit ions of 
ref. 19. Thus,  for example ,  

A(~)(x) = ~ st(~)(N)x N 
N 

denotes  the weighted sum over all sJ(r)(N) N-s tep  walk conf igura t ions  of 
the r th - s t age  3-simplex lat t ice p rov ided  one of  the endpoin t s  of  the walk 
lies within the same r th -s tage  lattice. Similarly,  

B r)(x, w, t) = M ,  e ) X N W M t  p 
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is the generating function for the number [N]r)(N, M, P)] of configurations 
of N-step SAWs with M steps along the attractive surface and with P steps 
lying in the layer adjacent to the surface, given that the SAW enters and 
leaves the rth-stage lattice at the vertices belonging to the wall. By analogy, 
the generating function B(2r)(x, w, t) is related to the walks traversing the 
rth-order lattice fractal and passing through the corner vertices of the 
rth-order triangle, provided one of these vertices lies on the attractive wall 
and the other one belongs to the lattice bulk. It is useful to note that the 
restricted partition functions B(x) ,  B~(x, w, t), and B2(x, w, t) can be inter- 
preted as two-point correlation functions for SISAWs on the 3-simplex 
lattice. 

To describe open SISAWs, one has to make a distinction between 
walks with one (both) endpoints fixed on the attractive surface of the 
rth-order triangle and walks one (both) of whose extremities end(s) in the 
bulk of the rth-order lattice. Therefore, for example, 

D(f)(x, w, t) = ~ ~ r ) ( N ,  M,  p )xNwMt  e 

refers to the SAWs with two open ends. The corresponding walks enter the 
rth-stage fractal at the corner vertices belonging to the atraetive surface. 
We also suppose that one of the walk extremities lies on the surface 
(represented in Fig. 2 by a black circle), while the other one must end 
somewhere in the bulk of the rth-order lattice (open circle). The other 
restricted partition functions are defined similarly (Fig. 2). 

To write down the recursion relation for different partition functions, 
one has to look for all possible ways in which a given configuration of the 
(r+l) th-stage fractal lattice may be constructed from the various 
configurations of the rth-stage lattice. In this way we obtain 

A' = (1 + 2B + 2B2)A + 2B2C (12) 

A'a = 2BA1 + 2BBzA  3 (13) 

A'2 = A + 2BA2 + 2BBzA4 + 2B~ C (14) 

A ; =  (1 +B1)A 3+BBzA 1 + B B e C 2  (15) 

A~ = B2(1 q- B1)A + BB2A2 + (1 + B1)A 4 q- BB2C 1 + B B z C  3 (16) 

B ' = B 2  + B 3 (17) 

B', = B 2 + BB22 (18) 

B'2 = BB:  + BB1B  2 (19) 
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C'~= 

C'2= 

C;= 

D ' =  

0'i= 

D3= 

D;= 

D ; =  

o;= 

D~= 

B2A + 3B2C (20) 

B~A + B~ C + 2BB 1 C1 (21) 

BB2A3 + 2BBI C2 (22) 

B2~C + BB2A4 + 2BB1C 3 (23) 

(1 + 2B)A 2 + 4BAC + 6BC 2 + (2B + 3B2)D (24) 

A~ + 2BC~ + 2B~D1 + 2BB2D4 (25) 

A] + 2B2AA4 + 4BIAC3 + 4BCI C3 + 2BC~ + B2D 

+ 2B1 D2 + 2BBzD7 (26) 

A3A4 + B2AA3 + 2BIAC2 + 2BC1 C2 + 2BC2C3 + 2B1D3 

+ BBzD 5 + BB2D 6 (27) 

BA ~A3 + BA3 C2 + BB2D~ + B(1 + B~)D4 (28) 

AA3 + BA2A3 + B1AA3 + B2A1 C+ BA3C1 + BA4C2 

+ 3B2CC2 + BB2D3 + B(1 + BI)D5 (29) 

BA~A4+B2A~C+BA3C3+B2CC2+BB2D3+B(I+B1)D6 (30) 

(1 + B1)AA 4 + BA2A 4 + 2B2A 2 C+ BA 4 Ct + BA4 C3 + 4B2 CC3 

+ 2B2CC~ + B2(1 + B1)D + BB2D2 + B(1 + B~)D 7 (31) 

where on the left-hand sides of the above equations we have substituted the 
superscript (r + 1) with the superscript prime, and on the right-hand sides 
we have omitted the superscript r. It is useful to note that correlation 
function recursion relations do not involve the open-walk variables [see 
(17)-(19)]. Similarly, recursion relations for bulk variables do not depend 
on surface variables. To perform a numerical study of the above system 
of equations (12)-(31), one has to specify the initial conditions for all 
restricted partition functions. For this one can follow the conventions of 
ref. 26: One assigns a weight x to each bulk vertex that the walk passes 

through, and a weight x /~  to each bulk vertex at which the walk ends (or, 
equivalently, at each vertex at which the walk starts). Then, if the relevant 
vertex lies on the attractive surface (in the layer adjacent to the surface), 
one should substitute the weight x with the weight z(y), where z - - x w  
(y=xt ) .  Thus, the initial conditions on the first-stage 3-simplex (the 
elementary triangle) are 
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A = ~/x (1 + 2x + 2x2), C 2 - - y z x f z  

A l =  2y( l  + z)x//-z, C 3 = 0  

A2 = xfly, D = x ( 1  +2x )  

A 3 = x / - z ( l + z + z y ) ,  D I = Z  

A 4 = z(1 + z )x /y  , 0 2 = 0 

B = x 2 + x 3, D 3 = z (y z )  1/2 

B1 =22(1 +y),  D 4 = y z  

B2 = zy(1 + z), D5 = (yz)~/2(1 + z) 

C = X 2 ~ ,  D 6 = 0 

C 1 = z 2 % ~ ,  O7=O 

(32) 

where, for the sake of simplicity, we have omitted the superscript (1) on the 
left-hand sides of the above relations. 

Now we are going to express the global generating functions (7)-(9) 
of the 3-simplex lattice in terms of 20 restricted partition functions. 
The global generating function "'ll~'(r+l)/'vt~, W, t) [which corresponds to an 
unnormalized function (8)] for the whole (r + 1)th-order fractal lattice can 
also be constructed recursively: 

~'(r + 1) - -  ~9 ~,(r) 
- - l l  - - ~ - - 1 1  +F~] ) ( 3 3 )  

where 

"] R(r )  R ( r )  l ) ( r )  F~ )= B(r)(A]r)) 2 -t- (A~r)) 2 + . u  ~2 ~ 4 (34) 

and where we have taken into account that only two rth-order triangles of 
an (r + 1)th-order triangle have the attractive surface for the boundary (see 
Fig. 1). Then, averaging over all possible starting points of the SAW and 
iterating the recursion relation (33), we obtain for the generating function 
per site 

C l l ( X  , w, t) = ~,  2-(r+l )F~ ) (35) 
r = l  

Similarly, we find 

CI(x,  w, t) = Cl l (x  , w, t) + ~ 2-rF~r) 
r = l  

(36) 
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and 

with 

C~(x, w, t) = ~ 2 -( '+I)F,  (') (37) 
r = l  

F~r)=AAI+BA1Az+A3A4+BzAA3+BB2(Ds+D6)  (38) 

F( , r I=2A(Az+BzA4)+A]+BA~+B~D+2BBeD7 (39) 

where we have suppressed the superscript (r) on the right-hand sides of the 
relations (38) and (39). Now we turn to the scaling analysis of the critical 
behavior of SISAWs on the truncated 3-simplex lattice. As mentioned 
above, detailed study of the phase diagram of the system [including the 
critical behavior of the correlation functions (17)-(19)] has been 
performed in ref. 19. Our findings are in complete agreement with those of 
Bouchaud and Vannimenus. However, due to slightly different initial 
conditions, our numerical values for some "nonuniversal" quantities (in 
particular, for the critical fugacity xc= 1/#) do not coincide with the 
corresponding values for the 2D Sierpinski gasket. (19) We will not repeat 
here the technical details which were given there, but we will quote the 
main results. 

Three different temperature regions were identified: 

(i) At high temperatures w<w*(t)  ( t<  1, being fixed), the critical 
fugacity xc is constant and equal to its bulk critical value xc(w)= 
(x~-1 ) /2~0 .61803 .  For all these values of temperature the bulk SAW 
fixed fixed point is reached 

(B*, B*, B*) = ( - ~ ,  0 ,0 )  (40) 

The fraction of SAW steps in contact with the surface, (18'19) 

M w dx c 

N xcdw 

vanishes in this temperature region and therefore the polymer is in the 
desorbed state. Linearization about this fixed point leads to only one 
relevant eigenvalue 

2 = 2B* + 3(B*) 2 = 7 -- x//5 ~"- 2.38197 (41) 
2 
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A <r) ~ 21, 

C (r) ~ 2rl, 

where 

which yields the value of the gyration radius critical exponent 
v =- log 2/log )~ ~ 0.79862. 

The leading singular behavior of the open walk restricted partition 
function at criticality x =  x~ can be easily deduced from the recursion 
delations (12)-(31). Taking into account (41), we find the following 
asymptotic behavior for large values of iteration index r: 

A]r),.~ 2r2, A ( 4 r ) ~ ( B * 2 1 )  r, D~)~ 2~ 

A (r) ~ ).rl, B( f  ) ~ ( O * )  r, O(6 r) ~ ( B ' 2 1 2 2 )  r (42) 

A(r) a *  Dir) r D~r) (B,221)r 3 ~ '~x3 '  ~ 2 2 ~  

6 -- 3B* + (25 - 33B*) m 
21 - 2 ~ 3.14590, 2 2 = 2B* ,~ 1.23607 (43) 

A simple way to extract the leading critical behavior of global 
generating functions (35)-(37) relies on finite-size scaling arguments. 
Indeed, let C~(xc) be the generating functions (36) of SISAWs on a lattice 
of length L at the critical fugacity xc = Xc(W, t). This function is expected to 
diverge as L ~l/v. On the other hand, taking into account (36), (38), and 
(42), we estimate that 

r=0 2---7- "~ 

where L = 2 ~. Therefore, we obtain 

log(2122/2) 
~/1 log 2 ~ 0.76606 (44) 

Following the above scheme, we also find 

log(2~/2) ~ 1.84238 (45) 
7 s -  log 2 

However, some caution is necessary in the case of generating function Cl1" 
It is easy to check that the sum (35) is not diverging at x~ (i.e., the 
exponent 711 is negative in this temperature region). To avoid this 
difficulty, we consider the first derivative of Cll. An analysis of this 
derivative on the lattice of size L = 2 K reveals that it follows the asymptotic 
law (for large K) 

dx . . . .  ~ 2-K(A~K))2 dx . . . .  
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where we also have taken into account that 

dB(mdx . . . .  = 2x 

Finally, comparing the above behavior and the behavior that follows from 
finite-size scaling arguments, 

d C lf . . . .  

we have 

~. L (1 + 711)/v 

log(22a/2) 
7~ = ~ -0.31025 (46) 

log 2 

We note also that a direct numerical approach leads to the same values of 
the above critical exponents. These exponents are in qualitative agreement 
with corresponding, presumably exact, values in d =  2: 7 l (d= 2)--61/64, 
~11(d= 2 ) =  -3/16 (see, for example, ref. 27). 

(ii) When the temperature is lowered, an adsorption transition 
occurs for w-- w*(t). This transition is controlled by a tricitical fixed point 
("special" fixed point in the terminology of surface physics) 

(x/-5~ ---1 x f 5 - 1  x/-5--1) (47) 
(B*, B*, B * ) =  ' 2 ' 2 

The fact that all three correlation functions assume the same value at this 
point is in agreement with a generally accepted picture: At this point a 
balance between the attractive polymer-surface potential and an effective 
repulsion (due to the loss of configurational entropy) sets in, which makes 
polymer correlation functions isotropic. In particular, the gyration radius 
scaling relation (11) is satisfied, i.e., vlr = v• =v,  where v is the bulk value 
of this exponent. Indeed, the above fixed point (47) has two relevant eigen- 
values, 2> = 2  [see (41)] and 

1 + 2B* + (21 - 32B*) ~/2 
2 < - 2 ~ 1.67096 (48) 

The gyration radius critical exponent v is determined by the larger eigen- 
value (2>), while the crossover exponent (2) involves both of them (~9) 

log 2 < 
~b = - -  ~ 0.59152 (49) 

log 2 > 
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Note that the values of the crossover exponent (49) is not far from the 
value ~b = 1/2 for the standard 2D lattice. ~ 

To determine the susceptibility critical exponents (3)-(5), we proceed 
along the lines of the discussion of region (i). Specifically, an analysis 
reveals the following limiting behavior of surface open-walk generating 
functions at the special fixed point (47) [note that A ~), C (r~, and D (r~ still 
follow the asymptotic law (42)] 

A]r~~ A~r)~ U3, C(2~)~ ):3,  D(4~)~ 2~ ~ , D(6") ,,~ (2~ 23)" 

A(f ) ~ 2~, A (4r) "~ 2], D~ r) ~ (2123) r , "v~(') "~ "~,~2~ 
(50) 

where 

B *  + 2 + (45 - 6 9 B * )  1/2 
23 - 2 ,~ 2.07642 (51) 

is the largest eigenvalue of the corresponding 3 x 3 matrix for the set of 
recursion relations involving the variables A~, A3, and C2 [-note that recur- 
sion relations (13), (15), and (22) become linear at the fixed point]. Then, 
using the approach described above, we find 

log(2123/2) ~ 1.36371 
71 = log 2 

log(2~/2) ~ 0.88504 (52) 
~11 log 2 

l o g ( 2 ~ / 2 )  ,.~ 1.84238 
7s log 2 

(iii) In the low-temperature region [w > w*(t)], due to the localiza- 
tion of the polymer chain, the polymer system should display the features 
of a one-dimensional system. In this case, the critical fugacity xc(w) is a 
decreasing function of w, while the correlation function recursion relations 
iterate toward the fixed point 

(B*, B*, B~') = (0, 1, 0) (53) 

Linearization about this fixed point gives only one relevant eigenvalue, 
24= 2, which yields vii = 1 and v• =0,  as one could expect. The leading 
singular behavior of the generating functions C, and Cll comes from the 
term A~ r),-~ 2] [note that in this temperature region C1 ~ Cll,  (36)]. It is 
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easy to check that all susceptibility critical indices coalesce, assuming the 
value for a 1D system 

71 =711 =Ts = 7 =  1 (54) 

Before leaving the case of adsorption on the truncated 3-simplex 
lattice it would be interesting to consider the scaling relations (10). These 
relations are generally expected to hold in the case of standard 
homogeneous lattices. A simple substitution of the above critical exponents 
supports the first of these relations, ys=271--711" However, after taking 
the values of bulk exponents v and 7 (7 = 1.37522(26)), one sees that the 
second scaling relation ( 2 7 1 - 7 ,  = 7 + v )  is not satisfied. It would be 
tempting, therefore, to modify this scaling relation in order for it to hold 
for the case of fractals. To achieve this goal, we consider the scaling ansatz 
for the singular parts of the bulk (fe) and surface ( f s )  free-energy densities 
of an appropriate magnetic model on a fractal lattice. By analogy with the 
relevant case for regular lattices/6) we can write 

f~(t, h )=  taHY~(h t  -y"/yr) 

f s ( t ,  h, hi) = ta'/Yr~s(ht-Y"/Yr, hi t -y</y~) 

where t, h, and hi are (reduced) temperature, bulk field, and surface field 
variables. The "temperature eigenvalue" Yr can be related to the correlation 
length critical exponent v (v = 1/yr), and the scaling indices Yu and Yh'l are 
known as bulk and surface magnetic eigenvalues, in the terminology of the 
RG approach. Then, using the definitions 

O f ~  ~ ~ t  ~, ~ 
c~2h t , t~2hl 63hl Oh 

we express the magnetic susceptibility exponents in terms of thermal and 
magnetic eigenvalues: 

2 y , , -  d• 2 y l , - d ,  
7 - - ,  ~)s-- - - ,  7 1 1 - - - -  

Yr Yr  

These relations imply 

2yH~ - d~ Y .  + Ym - d~ 
, 7 1 - -  

YT Yr  

7~ = 27~ - 7 .  = 7 + v ( d j -  ds) (55) 

It is easy to check that the above values of the susceptibility exponents 
(which have been obtained without referring to any magnetic model) 
satisfy the scaling relation (55). It is worth noticing that our findings for 

822/71/1-2-2 
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other studied models of polymer adsorption on fractals (28) also support this 
relation. Note also that we recover the scaling relation (10) when d I is 
equal to d, + 1, in particular, in the case of standard homogeneous lattices 
(in which case one has df  = d, d s = d -  1 ). 

3. SIERPINSKI  GASKET F A M I L Y  OF FRACTAL LATTICES 

In Section 2 we described an approach that can be used in order to 
obtain all surface exponents of surface-interacting SAWs on finitely ramified 
fractal lattices. Now, motivated by the intricate findings for the case of bulk 
SAWs,(21 23) we study the problem of polymer adsorption on a family of 
Sierpinski-type fractals introduced by Given and Mandelbrot. (zg) Different 
members of this family can be characterized by an integer b, which takes all 
values from 2 to oo. We recall that each lattice of this family (labeled by b) 
can be constructed recursively. Thus, to construct the fractal lattice with 
spatial scaling factor b, one starts with an equilateral triangle (generator) 
that contains b 2 smaller equilateral triangles. Then one replaces each of the 
b(b + 1)/2 upward-oriented small triangles of the initial generator by a new 
generator (see, for example, Fig. 1 of ref. 21). To obtain the rth-stage fractal 
lattice, this process of construction has to be repeated r -  1 times in a self- 
similar way. 

The fractal dimension of the lattices obtained in the above way is 
given by d F = log[-b(b + 1))/2J/log b. When the lattice parameter b tends to 
infinity, the resulting lattice structure resembles a triangular lattice and one 
would expect that SAW critical exponents converge toward their values for 
homogeneous lattices in d =  2. However, the available exact results for 
2 ~<b ~< 8 show that the susceptibility critical exponent 7 systematically 
increases and moves away from its two-dimensional value/zl) Using the 
finite-size scaling approach, Dhar argued that the limiting value 7(b --* oe ) 
is completely different from 7(d=2) ,  while v(b) must approach v (d=2)  
from below. The latter prediction then implies that v(b)  should be a non- 
monotonic function of b, which would seem in contrast with the short 
sequence of the exact results/21) The results of a recent RG Monte Carlo 
study 123) support, however, Dhar's prediction. 

In the present paper we confine ourselves to a study of the critical 
behavior of two-point correlation functions of the SISAWs on the class of 
Sierpinski gasket lattices. For this we use the approach described in the 
preceding section. To have a closed set of recursion relations one needs six 
restricted partition functions. Namely, one has to introduce three generat- 
ing functions B ~r), B~ r~, B~ r) for the walks passing through only two vertices 
of an rth-order fractal lattice (compare Fig. 2), and three corresponding 
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functions 2 (r), 2~ r), 2(r) for the walks visiting all three corner vertices. Here, 
for example, 2~ ') refers to the walks that enter and leave an rth-order 
fractal at the vertices that lie on the attractive wall, having visited the third 
bulk vertex as well (compare Fig. 2). The recursion relations for low values 
of the lattice parameter b can be obtained straightforwardly. In the simplest 
case b = 2, i.e., for the Sierpinski gasket lattice, the recursion relations for 
B, B1, B2, B, 21, and B2 are given by 

B' = B 2 + B 3 + 2B22 + 22 + 2B2 

B; = (B + 2)(B 2 4- 22) 4- B2(BBI 4- BB1 4- 2B1) 

B' = B22 + 2B/~ 2 

= + 22B222 

21 = 22(B 1 + B21 + 2BI) 

An examination of the above system of recursion relations shows that all 
three generating functions 2, 21, and B2 vanish at the relevant fixed point 
and that these functions do not affect any of the above-defined critical 
exponents. This allows us to reduce the above system of recursion relations 
to the simpler one (17)-(19). The same conclusion can be reached for an 
arbitrary value of the spatial scaling factor b of the lattice. This reduction 
is very useful, in particular, for large values of b, in which case the number 
of polymer configurations to be considered is so large that one has to use 
a computer to sort them out. In what follows we will discuss the critical 
behavior of SISAWs in terms of B, B1, and B2. 

We have been able to obtain the exact recursion relations of the 
polymer correlation functions for eight values of lattice parameter, 
2 ~< b ~< 9. The resulting'systems of recurrence equations are rather complex 
and take up too much space to be given here (a listing of corresponding 
results is available on request). Instead, we report here only the main 
results, which are qualitatively similar to the case of the 3-simplex lattice. 
As in that case, three different temperature regions were identified. The 
high-temperature region associated with the desorbed phase of the polymer 
system has been discussed in some detail in the context of the bulk SAW 
behavior on the same class of latticesJ 21 23) Here we only add one new 
member to the existing sequence of eight exact values (2~) of the correlation 
length critical exponent: v(b = 9) ~ 0.77196. The low-temperature behavior 
of the system is basically that described in detail in ref. 19 and outlined in 
Section 2 of this paper. 

We focus our attention on the point of adsorption transition, i.e., 



18 Bubanja e t  a/. 

Table I. The Eigenvalues X> and h< of the Renormalization Group 
Transformations for SISAWs on the Sierpinski Gasket Family of Fractals 

at the Special Fixed Point a 

b B* 2> )~< v q~ c~ 

2 0.61803 2.38196 1.67096 0.79862 0.59152 0.30945 
3 0.55115 3.99193 2 . 1 6 2 8 6  0.79364 0.55728 0.20557 
4 0.50634 5.80290 2 . 5 4 1 8 2  0.78840 0.53054 0.11512 
5 0.47449 7.78985 2 . 8 4 2 6 1  0 . 7 8 4 0 1  0.50892 0.03504 
6 0.45074 9.93601 3 . 0 8 6 4 2  0 . 7 8 0 3 3  0 . 4 9 0 8 2  -0.03739 
7 0 . 4 3 2 3 7  1 2 . 2 2 9 5 1  3 . 2 8 7 2 7  0 . 7 7 7 1 7  0 . 4 7 5 2 9  -0.10397 
8 0 . 4 1 7 7 3  1 4 . 6 6 1 2 2  3 . 4 5 4 8 8  0 . 7 7 4 4 1  0 . 4 6 1 7 1  -0.16585 
9 0.40580 1 7 . 2 2 3 6 7  3 . 5 9 6 3 4  0 . 7 7 1 9 6  0 . 4 4 9 6 8  -0.22380 

s y m m e t r i c  f ixed p o i n t  B = B1 = 92 = B* (see T a b l e  I). H e r e  the  e x p o n e n t  

refers to  the  l e ad ing  s ingu la r  b e h a v i o r  o f  the  p o l y m e r  free ene rgy  dens i ty  

U ( T )  = - k  B T log  # ( T )  ~ (Ta - T) 2 -  ~ 

I t  is k n o w n  (31) that ,  at  a t r ic r i t ica l  po in t ,  the  "specif ic  h e a t "  cr i t ica l  

e x p o n e n t  ~ can  be  r e l a t ed  to the  a b o v e - d e f i n e d  c r o s s o v e r  e x p o n e n t  r 

= 2 - 1/r  = 2 - l og  2 > / l o g  2 <.  O u r  resul ts  for the  cr i t ical  e x p o n e n t s  v, r 

a n d  ~ are  g iven  in T a b l e  I. I t  is seen (Fig.  3) t ha t  r is a dec reas ing  func t i on  

| d 

0 5 "  0 . 0  

0.4 I i ! I = - 0 . 3  
0 . 0  OJ 0.2 0.3 0.4 0.5 

1 

Fig. 3. The crossover critical exponent r as a function of l/b (circles), The horizontal broken 
line represents the 2D Euclidean value ~b = 1/2. We also present the thermal critical exponent 

as a function of lib (triangles). Note that r and c~ have different vertical axes. 

0.6 0,4 



Adsorption of Self-Avoiding Polymer Chain 19 

of b in the studied region 2~b~<9 and that it crosses the exact 2D 
Euclidean value ~b = 1/2 at b ,,~ 6. The thermal critical exponent ~ has a 
similar behavior and becomes negative for b >~ 6. It seems plausible, on the 
other hand, that q~ and a should approach their 2D Euclidean values in 
the asymptotic region b ~ Go. This implies that q~ and a should be some 
nonmonotonic functions of b--as  in the case of the gyration radius critical 
exponent v. 

It is interesting to note that our exact values of the crossover exponent 
satisfy the upper and lower bounds for this exponent derived by Bouchaud 
and Vannimenus(19): 1 - v(df-  ds) <<. ~ <~ dJdf. Unfortunately, being quite 
narrow for small values of b, these bounds are rather wide in the region of 
the fractal to the homogeneous system crossover (b --* or): 

log 2 1 3 log(log b)~b~< + - -  
4 +16 logb 41ogb 

where we have used Dhar's prediction(22): 

3 3 log(log b) 
v ( b )  ~ 

4 16 log b 

4. D I S C U S S I O N  

We have presented results for SISAWs on the truncated 3-simplex 
lattice and on a family of Sierpinski gasket-type fractals. By extending the 
real-space RG approach to the case of open SISAWs, we showed how to 
obtain the surface susceptibility exponents. It is demonstrated that these 
exponents obey a scaling relation that we derived using the analogy 
between polymer adsorption and surface magnetism on fractals. Our 
approach can be generalized to the case of other finitely ramified fractals. 
The number of parameters needed to describe the properties of open walks 
increases very quickly with lattice complexity (by increasing, for instance, 
the ramification of the lattice). It is useful to note, however, that the 
number of parameters can be reduced considerably in the case when one 
wants to study only the critical behavior. 

We found that many critical properties in the case of fractal lattices 
are similar to those of SISAWs on homogeneous lattices. Our study of 
SAWs on the family of Sierpinski gasket lattice reveals, however, that the 
critical behavior is not always as would be expected. Namely, our numeri- 
ca! data for critical exponents ~b and c~ show that these exponents must be 
some nonmonotonic functions of the lattice parameter b if they approach 
the corresponding Euclidean values in the limit b ~ oe. It seems likely that 
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a puzzle remains in the case of surface susceptibility exponents as well. 
Indeed, Dhar's predictions (22) and our scaling relation (55) imply 

157 345 log(log b) 
ys(b)~ 32 128 logb as b ~ o o  

which means that 7s(OO)= 157/32 ~ 4.90625 is completely different from its 
Euclidean counterpart 7s, a=2 = 7a=2 + va=2 = 67/32 ~ 2.09375. This is in 
contrast with recent arguments that critical exponents on fractals should be 
the analytical continuation of their counterparts on Euclidean lattices, 
providing both the fractal and the spectral dimension of the fractal lattice 
coalesce (see, for example, ref. 31). 

It is difficult to get a proper explanation for these somewhat surprising 
findings. As pointed out by Dhar, short SAWs do not feel the lattice 
boundary, for large, finite b, whereas very long chains go through the lat- 
tice constrictions3 =) The large-scale behavior of SAWs on fractals therefore 
can be strongly modified relative to their comportment on standard 
Euclidean lattices. One may expect that the fractal structure makes the 
SISAW behavior yet more sensitive to the details of the underlying lattice 
(for example, in order to stabilize the desorbed phase of a polymer system 
one has to choose the Boltzmann factor t < 1, which is quite different from 
the corresponding case on Euclidean lattices). Our findings for various 
surface scaling indices reveal, however, that a critical behavior of the type 
predicted for bulk SAWs (as b ~ ~ )  might occur in the case of SISAWs as 
well. Further investigation in this direction, using finite size-scaling or 
Monte Carlo approaches, would be very desirable in order to achieve a 
better understanding of the region of the fractal to Euclidean system 
crossover. 
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